Решение ТОЭ онлайн
Техника высоких напряжений ТВН
Электротехника, основы электроники
Электрические измерения, электрические материалы

 
на правах рекламы
Сортировать статьи по: дате | популярности | посещаемости | комментариям | алфавиту

Расчет трехфазного трансформатора КГТУ

Расчет трехфазного трансформатора КГТУ

Машины постоянного тока и трансформаторы. Методические указания. А.Л. Встовский, А.Н. Грунов. Красноярск, КГТУ, 2003

Машины постоянного тока и трансформаторы. Методические указания. А.Л. Встовский, А.Н. Грунов. Красноярск, КГТУ, 2003.

Контрольная работа №2 Расчет трехфазного трансформатора

Содержание работы

  1. Рассчитать параметры схемы замещения трансформатора. Начертить схему замещения и упрощенную векторную диаграмму.
  2. Рассчитать и начертить внешнюю характеристику.
  3. Определить ударный и установившийся токи внезапного симметричного трехфазного короткого замыкания.

Скачать Методические указания: Машины постоянного тока и трансформаторы. А.Л. Встовский, А.Н. Грунов. Красноярск, КГТУ, 2003.

muk-mashiny-pt-i-transformatory-kgtu-2003.pdf [577,83 Kb] (cкачиваний: 43)

Скачать решение контрольной работы №2 Расчет трехфазного трансформатора

kr2-raschet-trehfaznogo-transformatora.pdf [1,74 Mb] (cкачиваний: 46)

Технология изготовления толстопленочных микросхем

Технология изготовления толстопленочных микросхем

Технология изготовления толстопленочных микросхем

Толстопленочная интегральная микросхема – ИМС с толщиной пленок 10—70 мкм, изготавливаемых методом трафаретной печати (сеткографии).

Толстые плёнки толщиной в несколько десятков мкм применяют для изготовления пассивных элементов: резисторов, конденсаторов, проводников и контактов.

В целом толстоплёночная технология состоит из ряда последовательных идентичных циклов:
- нанесение слоя
- сушка
- выжигание
- смена пасты и трафарета
- нанесение слоя и т.д.

Планарно-эпитаксиальная технология изготовления интегральных микросхем

Планарно-эпитаксиальная технология изготовления интегральных микросхем

Планарно-эпитаксиальная технология изготовления интегральных микросхем

Общая технологическая схема процессов производства полупроводниковых микросхем (или интегральных схем (ИС)) включает подготовительные процессы, формирование структуры ИС, в том числе межсоединений ее элементов, и заключительные процессы.

К подготовительным процессам относятся изготовление требуемого комплекта фотошаблонов и ряд заготовительных операций: подготовка полупроводниковых подложек (пластин), корпусов ИС и др.

Формирование структуры полупроводниковой ИС происходит по планарно-эпитаксиальной технологии, заключающейся в создании элементов ИС в приповерхностных слоях полупроводниковой пластины с одной (рабочей) стороны при использовании эпитаксиального наращивания тонкого слоя кремния и групповой обработки пластин. Причем отдельные процессы групповой обработки, например фотолитография, диффузия примесей, окисление, очистка поверхности пластины, носят циклический характер, т.е. обычно многократно повторяются при синтезе структуры полупроводниковых ИС и каждая последовательность процессов формирует определенную часть структуры ИС.

Включение p-n-p транзистора с общим эмиттером

Включение p-n-p транзистора с общим эмиттером

Включение p-n-p транзистора с общим эмиттером

Схема включения транзистора p-n-p с общим эмиттером. Формула коэффициента усиления для схемы с общим эмиттером

У транзисторов возможны три основные схемы включения. Они классифицируются в зависимости от выбора общего электрода усилительного каскада, т. е. электрода, входящего одновременно во входную и выходную цепи прибора. В соответствии с условиями установок связи этот общий электрод обычно заземляется.

В большинстве случаев предпочтение отдается схеме с общим эмиттером (рисунок 1). В этой схеме входным током является ток базы IБ, а выходным — ток коллектора IК. Отношение этих токов определяет коэффициент усиления по току схемы с ОЭ.

По заданной потенциальной диаграмме начертить схему электрической цепи

По заданной потенциальной диаграмме начертить схему электрической цепи

По заданной потенциальной диаграмме начертить схему электрической цепи

Задача. По заданной потенциальной диаграмме (рисунок 4.6) начертить схему электрической цепи и составить для этой цепи баланс мощностей.

Скачать решение Задачи По заданной потенциальной диаграмме (рисунок 4.6) начертить схему электрической цепи и составить для этой цепи баланс мощностей

po-zadannoy-potencialnoy-diagramme-nachertit-shemu-elektricheskoy-cepi.pdf [134,66 Kb] (cкачиваний: 49)

Трехфазный трансформатор Контрольная работа УрГУПС

Трехфазный трансформатор Контрольная работа УрГУПС

Трехфазный трансформатор Контрольная работа УрГУПС

Григорьев В.Ф. Трехфазный трансформатор. Задания для контрольной работы 1 и методические указания / В.Ф. Григорьев, А.В. Бунзя. – Екатеринбург: Издательство УрГУПС, 2011. – 27 с.

Методические указания составлены в соответствии с учебным планом для студентов заочного обучения специальностей 190303 – «Электрический транспорт железных дорог», 190401 – «Электроснабжение железных дорог», 190302 – «Вагоны» IV курса, по дисциплине «Электрические машины и электропривод».

Содержатся теоретические положения по разделу «Трансформатор» и рекомендации к выполнению контрольной работы 1 и подготовке к экзаменам.

Скачать Задания для контрольной работы 1 и методические указания, Григорьев В.Ф., Трехфазный трансформатор, УрГУПС

trehfaznyy-transformator-kontrolnaya-rabota-urgups.pdf [381,2 Kb] (cкачиваний: 55)

 

Исходные данные для контрольной работы Трехфазный трансформатор

SH – номинальная мощность трансформатора, кВ·А;

U1H – номинальное напряжение обмотки ВН, кВ;

U2H – номинальное напряжение обмотки НН, кВ;

UК % – напряжение короткого замыкания;

i0 % – ток холостого хода;

PК – потери короткого замыкания, кВт;

P0 –потери холостого хода, кВт;

Схема и группа соединения обмоток трансформатора;

cos φ2 – коэффициент мощности нагрузки.

Шунты

Шунты

Шунты применяются для расширения пределов измерения измерительных механизмов по току

Шунты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую – через измерительный механизм.

Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Шунт является простейшим измерительным преобразователем тока в напряжение. Измерительный шунт представляет собой четырехзажимный резистор.

Два входных зажима шунта, к которым подводится ток I, называются токовыми, а два выходных зажима, с которых снимается напряжение U, называются потенциальными.

К потенциальным зажимам шунта обычно присоединяют измерительный механизм измерительного прибора.

Сравнительные характеристики толсто- и тонкопленочных микросхем

Сравнительные характеристики толсто- и тонкопленочных микросхем

Сравнительные характеристики толсто- и тонкопленочных микросхем

В микроэлектронике используются два основных вида интегральных микросхем: пленочные и полупроводниковые ИМС.

Пленочные ИМС создаются на диэлектрической подложке путем послойного нанесения пленок различных материалов с одновременным формированием из них микроэлементов и их соединений.

Полупроводниковые ИМС создаются путем локального воздействия на микроучастки полупроводникового монокристалла и придания им свойств, соответствующих функциям микроэлементов и их соединений.

Комбинации этих технологий позволили создать гибридные и совмещенные ИМС, которые компенсируют некоторые недостатки, имеющиеся у пленочных и полупроводниковых ИМС.

Пленочная микросхема – микросхема, все элементы и межэлементные соединения которой выполнены только в виде пленок проводящих и диэлектрических материалов.

АГЗ МЧС РГР-2 Расчёт линейных цепей однофазного синусоидального тока

АГЗ МЧС РГР-2 Расчёт линейных цепей однофазного синусоидального тока

АГЗ МЧС РГР-2 Расчёт линейных цепей однофазного синусоидального тока

Расчётно-графическая работа №2 Расчёт линейных цепей однофазного синусоидального тока

Задание 2.1 Электрическая цепь с одним источником энергии

Для электрических схем, изображенных на рисунках 2.1.1 – 2.1.40, по заданным в таблице 2.1.2 параметрам и ЭДС источника определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов и потенциальную диаграмму напряжений по внешнему контуру. Определить показание вольтметра и активную мощность, показываемую ваттметром.

Скачать решение РГР-2 Расчёт линейных цепей однофазного синусоидального тока

zadanie2.1-raschet-lineynyh-cepey-odnofaznogo-sinusoidalnogo-toka.pdf [172,91 Kb] (cкачиваний: 170)

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Задание 1 Расчёт линейных цепей постоянного тока

Для электрической схемы, изображенной на рисунках 1.1 – 1.50, по заданным в таблице 1.2 сопротивлением и ЭДС выполнить следующее:

  1. Составить систему уравнений, необходимых для определения токов по первому и второму правилам Кирхгофа.
  2. Найти и вычислить все токи, пользуясь методом контурных токов (решения провести с помощью составления матрицы для системы уравнений и определителей).
  3. Проверить правильность решения, применив метод узлового напряжения, предварительно упростить схему, заменив треугольник сопротивлений r4, r5 и r6 эквивалентной звездой. Начертить расчётную схему с эквивалентной звездой и показать на ней токи.
  4. Определить ток в резисторе r6 методом эквивалентного генератора.
  5. Определить показание вольтметра и составить баланс мощностей для заданной схемы.
  6. Построить в масштабе потенциальную диаграмму для внешнего контура.

Скачать решение варианта Задания 1 Расчёт линейных цепей постоянного тока

zadanie1-raschet-lineynyh-cepey-postoyannogo-toka.pdf [286,35 Kb] (cкачиваний: 117)


Назад Вперед
Наверх