Решение ТОЭ онлайн
Техника высоких напряжений ТВН
Электротехника, основы электроники
Электрические измерения, электрические материалы

 
» » Транзистор. Режимы работы транзистора. Усиление с помощью транзистора
на правах рекламы

Транзистор. Режимы работы транзистора. Усиление с помощью транзистора

Транзистор. Режимы работы транзистора. Усиление с помощью транзистора

Биполярный транзистор – полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис. 1, а и б показаны их условные обозначения.

Биполярные транзисторы и их диодные эквивалентные схемы: а) p-n-p, б) n-p-n транзистор

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

а) p-n-p, б) n-p-n транзистор

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Полярность включения: а) n-p-n, б) p-n-p транзистора

Рис. 2. Полярность включения: а) n-p-n, б) p-n-p транзистора

Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:

UБUЭ+0,6 В; (UБ = UЭ + UБЭ)(1)

  1. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

IК = α IЭ,  (2)

где α=0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

IБ = IЭIК(3)

Ток коллектора зависит от тока базы в соответствии с выражением:

IК = βIБ,  (4)

где β=α/(1-α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Усиление с помощью транзистора. На рис. 3 изображена схема усилительного каскада с транзистором типа n-p-n. Принято данную схему называть схемой с общим эмиттером, так как эмиттер является общей точкой для входа и выхода схемы.

Входное напряжение UВХ, которое нужно усилить, подается от источника колебаний на участок база – эмиттер. На базу подано также положительное смещение от источника Е1, являющееся прямым напряжением для эмиттерного перехода. При этом в цепи базы протекает некоторый ток. Цепь коллектора питается от источника Е2. Для получения усиленного выходного напряжения в эту цепь включена нагрузка RН.

Схема включения транзистора в усилительный каскад (схема с общим эмиттером)

Рис. 3. Схема включения транзистора в усилительный каскад (схема с общим эмиттером)


Теги: Транзистор, Режимы работы транзистора, Усиление с помощью транзистора

Комментарии:

Оставить комментарий